
PART II

The mod_perl API

At its simplest, mod_perl is merely a way to add real
performance to the CGI environment, and many programmers
are content to leave it at that. However, if you read Chapter 2
and stood back a moment, the implications of it ought to give
you pause. Yes, you can potentially configure Apache with a
single PerlModule directive. Yes, you can have persistent
database connections without changing a single line of your
existing code. Yes, all of it in Perl. Staggering.

The remainder of this book discusses something even better—
with mod_perl you can access the full functionality of Apache
using Perl! Prior to mod_perl, the only way to create extensions
to Apache was to write them in C, which came with the usual
headaches of slow development lifecycles, memory
management, lack of native string support, clunky regular
expressions, and so on. For whatever drawbacks there are to
writing extensions using C, though, the fact that Apache has the
underlying ability to allow you to tie into things such as URI to
filename mapping, authentication, and MIME type translation
makes it perfect for creating robust, scalable, and enterprise-
ready Web applications. Now, with mod_perl, Perl developers
can leverage this incredible infrastructure. In fact, as you will
find in the following pages, they can do much more.

Unlike the CGI environment, which is confined to content
generation, it is possible for Perl code to run during any of
Apache’s operational phases:

• Parsing of the configuration file

• Initializing a child process

• After reading the headers

• URI to filename translation

• Merging of configuration directives

05 0672322404 PT02 10/31/02 2:27 PM Page 77

78 MOD_PERL DEVELOPER’S COOKBOOK

• First entry into a container directive

• Checking host-based access control

• Checking user credentials

• Verifying a user against a specific resource

• Determining the MIME type

• Fixing up the headers prior to a response

• Generating the actual content

• Logging the request

• Cleaning up afterward

• Shutting down a child

• Restarting the server

If fully configured, your mod_perl perl server will allow Perl code to be executed for
any of these phases.

In the typical Apache server programming environment, the term handler is used to
refer to the code that processes the content generation phase only. However, mod_perl
takes this a step further and applies the term to its hooks into all the phases of the
Apache lifecycle. In mod_perl, a module used by one or more of the previously
mentioned phases is called a handler, and you will hear this term used frequently
throughout the book. For the moment, understanding a mod_perl handler as a single
subroutine named handler() contained within an ordinary Perl module is sufficient.
For example

package My::Dinghy;

use strict;

sub handler {

do stuff here...

}

1;

For each of the Apache phases, configuring mod_perl to run one or more handler()
subroutines is possible. mod_perl accomplishes this task by using the Apache C API to
both register itself with each phase and provide a custom httpd.conf directive for

05 0672322404 PT02 10/31/02 2:27 PM Page 78

79PART II The mod_perl API

configuring the phase. With these custom directives, we can specify the appropriate
mod_perl handler that will be responsible for processing the phase.

Here is a complete list of mod_perl handler interfaces into the Apache lifecycle, each
corresponding to one of the operational phases previously discussed:

• SERVER_CREATE(), DIR_CREATE(), DIR_MERGE() subroutines

• PerlChildInitHandler

• PerlPostReadRequestHandler

• PerlTransHandler

• DIR_MERGE() subroutine

• PerlHeaderParserHandler

• PerlAccessHandler

• PerlAuthenHandler and PerlAuthzHandler

• PerlTypeHandler

• PerlFixupHandler

• PerlHandler

• PerlLogHandler

• PerlCleanupHandler

• PerlChildExitHandler

• PerlRestartHandler

Remember, your own Perl code can be called during any of these phases, dynamically
and subtly modifying the operation of the server. The amount of power and flexibility
this feature allows is stunning.

Before you can take full advantage of all that mod_perl has to offer, however, you need
to understand some of the fundamental concepts that you will be expanding on in your
own programming. Part II focuses on the mechanics of the mod_perl API, such as
accessing the Apache request object, URI and file manipulation, and actually creating,
tuning, and fully leveraging the power of handlers. Part III then explains how to use
handlers within each phase of the Apache lifecycle to their full extent. Along the way,
we hope to augment what you may already know with the experiences of others who
struggled through mod_perl over the years.

05 0672322404 PT02 10/31/02 2:27 PM Page 79

