
1

Rock Your Testing World
with Devel::Cover

Geoffrey Young
Geoffrey.Young@Ticketmaster.com

2

Oh, Yeaahh!
• Hopefully, everyone here hath drunk of
the testing kool-aid
• Coverage is the next
step in your test-fu

3

Coverage?
• Ok, so you have some tests...
• How much of the code are your tests
actually exercising?
• Code coverage measures tested
program logic
• Devel::Cover adds the magic

4

Devel::Cover

• On CPAN

• Eerily simple to use

• Complete voodoo inside

• Paul Johnson rocks

5

6

7

8

9

Coverage in 2 Easy Steps
$ cover -delete

$ HARNESS_PERL_SWITCHES=-MDevel::Cover make test

$ cover

10

Coverage in 3 Easy Steps
$ cover -delete

$ HARNESS_PERL_SWITCHES=-MDevel::Cover make test

$ cover

• That's too much work for me

11

Coverage in 1 Easy Step
• Savvy modules make life even better

$ make testcover

• testcover-aware modules
– Module::Build
– Apache-Test
– ExtUtils::MakeMaker::Coverage

Don't like dependencies?
– do it yourself...

12

sub MY::test {

 my $test = shift->MM::test(@_);

 if (eval { require Devel::Cover }) {
 $test .= <<EOF;
testcover ::
 cover -delete
 HARNESS_PERL_SWITCHES=-MDevel::Cover make test
 cover
EOF
 }

 return $test;
}

Makefile.PL

13

That's It!
• I've just told you everything you need
to know to use Devel::Cover

• Go forth

• The rest of the talk...
– understanding Devel::Cover data

– code coverage concepts

– real-world examples

14

3 Coverage Metrics
• Statement
– simple execution
print "ok" if $foo || $bar;

• Branch
– logical pathways
print "ok" if $foo || $bar;

• Condition
– elements of a branch
print "ok" if $foo || $bar;

15

16

17

18

19

20

21

22

PHB
• As soon as pictures are involved,
you're pretty much doomed

• "Why isn't it all green?"

23

For the Record...
1."Wow, we have tests?"

2."Your initiative is impressive."

3."Good work."

4."I didn't know you could even do that"

5."Take tomorrow off."

6."Your new code coverage technique is
unstoppable."

24

...Then
1."If it's not too much trouble, sir, after
your so obviously selfless toils to
improve our understanding of what
was before an unnavigable mire of
jumbled code, could you be so kind to
me, sir, as to explain why, despite your
best efforts, the results are less than
the perfection you, yourself, aim to
achieve, even if we as a company do
not."

25

Translation
• "What do the numbers actually mean?"

• "What should our goals be?"

26

• Coverage tells you nothing about code
– specifically, whether it works or not

• Says little about test completeness
– not what was tested well, just what was tested

• More a measure of test gaps
–where you need tests

• Coverage is never the whole story

27

28

29

Don't Just Test – Test Well
• Don't be led into a false sense of
security by coverage reports

• A pretty image won't save you from
incomplete or poor tests

30

What is it Good For?
• Paired with good testing practices,
code coverage is very powerful

• Coverage shows which parts of your
code you still need to test
– "untested code does not exist"

• Can also uncover unsavory code

31

32

33

throw TMCS::Exception(text => "...", modify_depth => 1)
 if (ref($lang) || !defined $lang);

throw TMCS::Exception(text => "...", modify_depth => 1)
 if (not defined $lang);

34

if(not defined &$method) {

 ...

 *$method = sub {...} unless defined &$method;
}

35

• "What do the numbers actually mean?"

• "What should our goals be?"

Our Questions

36

How Much Green is Enough?

• Some people will claim arbitrary goals
– "... you should aim to provide at least 80%
coverage in your code"

• Untested code is untested code
– "Untested code does not exist"

• 100% coverage is impractical
– for a number of reasons

• Aim for 100% understood coverage

37

Impractical?
• Yeah, 100% is impractical
– some say it's sometimes impossible

• Sometimes you don't really care about
testing an execution path
– simple debug statements

– $self in object oriented code

• Devel::Cover has its own set of
"features"

38

39

40

41

42

Aesthetically (Un)Pleasing
• Don't let (un)pretty graphs distract you
• 100% coverage is nice, but not always
practical

43

100% Understood Coverage

• Ideally, tests should get as close to
100% as possible
– don't shoot for 80% or some arbitrary value

• The missing percent should be easily
explained
– non-production code

– clear API violations

• Colors don't matter

44

Debugging with Coverage
• Devel::Cover adds value to your tests
–worth the time just for that

• Also a worthy debugging aid

45

my $LAST_CHECK = 0;
my @DEAD_SERVERS = ();

sub _get_dead_servers {

 if ($LAST_CHECK < (my $mtime = (stat($TM::file))[9])) {

 $LAST_CHECK = $mtime;

 if (open my $fh, $TM::file) {
 @DEAD_SERVERS = <$fh>;
 chomp @DEAD_SERVERS;
 } else {
 @DEAD_SERVERS = ();
 undef $LAST_CHECK;
 }
 }
 return @DEAD_SERVERS;
}

46

My Test Philosophy
• I like to test three things with files
–No file

–Unreadable file

–Readable file

• httpd environments lend themselves
to unreadable files
– server starts as root

– requests served by nobody

47

48

What Went Wrong?
• It's not immediately obvious
• The old way to debug this might be to
add a bunch of print statements
– or maybe whip out the debugger

• Since you already have the tests in
place, Devel::Cover can help
• Let's see how far we can get using just
Devel::Cover

49

50

51

Non-Existent File Test

local $TM::dbfile = 'deadserver.test';

{
 my @dead_servers = TM->_get_dead_servers();

 is (scalar @dead_servers,
 0,
 'handles non-existent file gracefully');
}

52

Unreadable File Test

my @servers = qw(test1 test2 test3 test4);

[stuff that creates and populates the file]

{
 chmod 0111, $TM::dbfile;

 my @dead_servers = TM->_get_dead_servers();

 is (scalar @dead_servers,
 0,
 'handles unreadable file gracefully');
}

53

Readable File Test

my @servers = qw(test1 test2 test3 test4);

{
 chmod 0644, $TM::file;

 my @dead_servers = TM->_get_dead_servers();

 ok (eq_array(\@dead_servers, \@servers),
 'returned 4 servers');
}

54

Why Does It Fail?
• chmod does not update the mtime

• $LAST_CHECK represents a failed check

• Now you get to decide whether this is
a bug or a feature
– is the test or the code wrong?

• I decided it is a bug
– you want to be able to chmod a file without
restarting the server

55

56

57

58

Resources
• Devel::Cover sources

http://search.cpan.org/dist/Devel-Cover/

• Code coverage articles
http://en.wikipedia.org/wiki/Code_coverage

• Kathy Sierra's "girl code" blog entry
http://xrl.us/girlcode

• These slides
http://modperlcookbook.org/~geoff/

