
1

Power PHP Testing

Chris Shiflett
chris@omniti.com

Geoffrey Young
geoff@modperlcookbook.org

2

I Don't Have Time To Test!
• Common misconception: testing takes
too much time

• It giveth more than it taketh away
– trim down your technical debt

• You don't have time not to test

• You are probably "testing" anyway

• Let's formalize what you're doing

3

Formalization
• Testing Theory in a Nutshell™

• Actual tests

• Along the way...
–good practices
– live demos
– candy

4

Test Types
• There are lots of different kinds of tests
– Integration

–Function
–Unit
–Acceptance
–Regression

• Called by different names, still same
ideas

5

Integration Tests
• End-to-End testing

• Exercises the application as a whole

• Makes sure that all the parts work
together

• Typically performed by QA

• "Does the application work?"

6

Function Tests
• "Does the developer interface work?"

• Exercise official API

• Standard data, observed bugs

• Most commonly found

7

Unit Tests
• Guts testing

• "Does the code work?"

• Exercise implementation
–private subroutines

• Bugs, edge cases, branches, conditions

• "Twiddle my bits"

8

Acceptance Tests
• Requirements testing

• "Does it do what the client wants?"

9

Regression Tests
• Back compat tests

• "Does it unfix previous fixes?"

10

Test Types
• There are lots of different kinds of tests
– Integration

–Function
–Unit
–Acceptance
–Regression

• All are important

• Doing one does not excuse you from
doing the others

11

Function v Unit v Integration
• Unit tests
–exercise function logic
– that logic might be wrong, so

• Function tests
–exercise the API
–APIs are always part of a system

• Integration tests
–exercises the entire system

12

PHP Testing
• Show some PHP code

• Try to test it using a few different
frameworks
–phpt

–Simple-Test

–PHPUnit

–Apache-Test

• hint: Apache-Test rocks

13

<?php

function create_user($username, $password) {
 ...
}

function delete_user($username) {
 ...
}

function hash_password($password) {
 ...
}

function glean_credentials() {
 ...
}

function authenticate_user($username, $password) {
 ...
}
?>

functions.inc

14

function create_user($user, $pass)
{
 $clean = array();
 $sqlite = array();

 ... data validation ...

 $sqlite['user'] = sqlite_escape_string($clean['user']);
 $sqlite['pass'] = sqlite_escape_string($clean['pass']);

 $db = sqlite_open('/tmp/db.sqlite');

 $sql = "INSERT
 INTO users
 VALUES ('{$sqlite['user']}', '{$sqlite['pass']}')";

 if (sqlite_query($db, $sql))
 {
 return TRUE;
 }

 return FALSE;
}

create_user()

15

What to Test?
• This is actually the hardest part

• Hopefully we can help :)

16

Testing is a Skill
• Part of our Craft

• Nobody possess it at first

• Developed
– if you have the dedication and patience

• Honed over time

• Lost if not exercised

17

Kata
• A prearranged series of
movements

• Designed to teach new
skills

• Instructs on many
different levels

18

Kata: The Student

• Learn the motions

• Focus on the mechanics

• Understanding is not required

19

Kata: The Master
• The motions are fluid
and second nature

• Understanding begins
– individual movements
–kata as a whole

20

Kata: The Artist

• Personal expression

• Application to new situations

• Continued learning

21

Kata: Power PHP Testing
• Common testing
methodologies

• PHP testing
frameworks

22

What to Test?
• This is actually the hardest part

• Hopefully we can help :)

• create_user() adds a user to
something

• What aspects of that process do you
care about?

• If you were following XP you would
figure this out before you wrote the
function

23

Unit Test Kata
• Data Validation
–no null users or passwords
–bad characters, etc

• Normal Condition
–users can be added

• Edge Cases
–duplicate users
–sql injection, etc

24

<?php

require 'test-more.php';
require dirname(__FILE__) . '/../inc/functions.inc';

plan(9);

{
 # no user or password
 $return = create_user('', '');
 ok (!$return, 'no user/pass fails');
}

{
 # no user
 $return = create_user('', 'password');
 ok (!$return, 'password but no user fails');
}

{
 # no password
 $return = create_user('user', '');
 ok (!$return, 'user but no password fails');
}

create_user() Tests

25

Testing Basics
• All testing frameworks apply the same

basic principles:
–understand your input
– compare expected output to actual output

• The differences are mostly in how that
simple task is accomplished

26

$db_file = '/tmp/db.sqlite';

{
 $db = sqlite_open($db_file);
 ok ($db, 'created database successfully');

 $sql = "CREATE TABLE users
 (
 username varchar(50),
 password varchar(32),
 PRIMARY KEY (username)
)";

 $return = sqlite_query($db, $sql);
 ok ($return, 'added table successfully');
}

{
 # some generic user/password
 $return = create_user('user', 'password');
 ok ($return, 'generic user/pass successfully added');

 # cleanup
 delete_user('user');
}

27

• Failures are Bad™

• Inconsistent failures are Very Bad™

• To save you from inconsistent failures
every test must
– create its own environment
– clean up after itself

• That way, every test can be run
again and again and again and
again and again and again and
again and again...

Be Thou Self-Contained

28

{
 # test key uniqueness
 $return = create_user('user', 'password');
 ok ($return, 'unique user/pass successfully added');

 # sqlite throws duplicate user warnings - turn those off
 # but only here. don't be sloppy :)
 $return = @create_user('user', 'password');
 ok (!$return, 'duplicate user/pass could not be added');

 # cleanup
 delete_user('user');
}

database cleanup
always leave your testing environment the way you
found it so that the test is completely rerunnable

{
 $return = unlink($db_file);
 ok ($return, 'db.sqlite successfully removed');
}

?>

29

So Far...
• We have shown a few basic test
scenarios
–what to test
–be self-contained

• We glossed over the framework-
specific foo

• Let's do that now...

30

<?php

require 'test-more.php';
require dirname(__FILE__) . '/../inc/functions.inc';

plan(9);

{
 $return = create_user('', '');
 ok (!$return, 'no user/pass fails');
}

{
 $return = create_user('', 'password');
 ok (!$return, 'password but no user fails');
}

{
 $return = create_user('user', '');
 ok (!$return, 'user but no password fails');
}

Apache-Test

31

Apache-Test

• Part of the mod_perl ASF project

• Provides full testing integration with
Apache and Apache-based modules
– like PHP

• Written in Perl
–Geoff likes this
–Chris, not so much

• Apache-Test rocks

32

test-more.php

• Automagically generated

• Interface into Apache-Test

• Provides simple, intuitive functions
–ok()
–is()
–like()

• Takes care of bookkeeping
–plan()

• Known to include_path

33

The test-more Paradigm

• Adopted from the time-tested Perl
mythology (sic)

• plan() the number of tests

• call ok() for each test you plan
– or is(), or like(), or unlike(), etc...

34

More on Apache-Test
• Makefile driven

$ make test

• Fully integrated with Apache
– configures httpd
– starts httpd
– stops httpd
– tests can run in real httpd environment

• Other goodies
– issues final report
–verbose mode

35

phpt

• Uses the pear binary

– in other words, included with PHP
• Dirt simple
–says Chris

36

--TEST--
create_user() function
--FILE--
<?php

require dirname(__FILE__) . '/../inc/functions.inc';

{
 $return = create_user('', '');
 var_dump($return);
}

{
 $return = create_user('', 'password');
 var_dump($return);
}

{
 $return = create_user('user', '');
 var_dump($return);
}

?>
--EXPECT--
bool(false)
bool(false)
bool(false)

phpt

37

More on phpt
• As simple as it gets

• Lacks features
–almost like not having a tool at all

• Comparing output in bulk will not
scale
–which of 237 tests failed?
–and why?

• Cruft
–we'll get to that later

38

Simple-Test

• Written by Marcus Baker

• Heavily Object Oriented
–for tests? you must be kidding.

• Popular

39

<?php

require_once('../simpletest-1.0.0/unit_tester.php');
require_once('../simpletest-1.0.0/tap-reporter.php');
require dirname(__FILE__) . '/../inc/functions.inc';

class CreateUserTest extends UnitTestCase
{
 public function testBlankCredentials()
 {
 $return = create_user('', '');
 $this->assertFalse($return);
 }

 public function testBlankUser()
 {
 $return = create_user('', 'password');
 $this->assertFalse($return);
 }

 public function testBlankPassword()
 {
 $return = create_user('user', '');
 $this->assertFalse($return);
 }
}

$test = &new CreateUserTest();
$test->run(new TapReporter());

?>

Simple-Test

40

unit_tester.php

• Simple-Test's main library

• Holds comparison functions

• Names are not exactly intuitive

41

unit_tester.php

Simple-Test

• assertTrue()

• assertEqual()

• assertNotEqual()

• assertWantedPatte
rn()

• assertNoUnwantedP
attern()

test-more.php

• ok()

• is()

• isnt()

• like()

• unlike()

42

And Don't Forget...
• You must call these from within a

method in a class in your test file
–with Simple-Test, that is

43

More on Simple-Test
• HTML-based report

• Objects smobjects
–but if you insist, it has mock objects

• Other tools
– like the ones you get with Perl

• Popular

44

PHPUnit
<?php

require_once 'PHPUnit2/Framework/TestCase.php';
require dirname(__FILE__) . '/../inc/functions.inc';

class CreateUserTest extends PHPUnit2_Framework_TestCase
{
 public function testBlankCredentials()
 {
 $return = create_user('', '');
 $this->assertEquals(FALSE, $return);
 }

 public function testBlankUser()
 {
 $return = create_user('', 'password');
 $this->assertEquals(FALSE, $return);
 }

 public function testBlankPassword()
 {
 $return = create_user('user', '');
 $this->assertEquals(FALSE, $return);
 }
}

?>

45

TestCase.php

• PHPUnit's main library

• Not quite as bad as Simple-Test

• Still pretty bad

46

TestCase.php

PHPUnit

• assertTrue()

• assertEquals()

• assertNotEquals()

• assertRegExp()

• assertNotRegExp()

test-more.php

• ok()

• is()

• isnt()

• like()

• unlike()

47

And Again...
• You must call these from within a

method in a class in your test file

48

More on PHPUnit
• Truckload of dependencies
–Truckload wasn't the word Chris used

–More on that later

• Popular
–Zend framework

49

Running the Tests
• Thus far, we've covered what you write

• Tests are where you should spend
most of your time

• Getting ready to run the tests comes in
varying levels of difficulty
– should be a one time cost
–boy, can it be expensive...

50

make rules
• Before you were born, there was make

• We created a Makefile so
$ make test

ran the tests for each framework

• Here's what we did...

51

Makefile for phpt
test:

 pear run-tests t/*.phpt

52

When Tests Fail
• Ordinarily you should have no ongoing
test failures

• "oh, that test always fails"
–BAD, BAD, BAD!
–decreases the integrity of your suite

• But when failures happen, they should
be easy to debug

53

Hopefully, you saw...
• make test output looks no different on

failure

• Instead phpt pukes all over the
filesystem

• We found this incredibly annoying
$ make assertNoUnwantedPuke

$ make clean

54

Makefile for PHPUnit
• This was an iterative process

• First, we tried
$ phpunit t/*.php

Warning: require(PHPUnit2/...):
failed to open stream: No such
file or directory

55

Makefile for PHPUnit
• Then, we altered include_path:

$path = dirname(__FILE__);
$path = realpath($path);
ini_set('include_path', "$path/PEAR");

$./phpunit t/*.php
Warning: require(PEAR/...):
failed to open stream: No such
file or directory

56

Makefile for PHPUnit
• Then, we altered include_path again:

$path = dirname(__FILE__);
$path = realpath($path);
ini_set('include_path', "$path:$path/PEAR");

$./phpunit t/*.php
Warning: require(CreateUserTest.php):
failed to open stream: No such file
or directory

57

Makefile for PHPUnit
• We altered include_path yet again:

$path = dirname(__FILE__);
$path = realpath($path);
ini_set('include_path',
"$path:$path/PEAR:$path/PEAR/PHPUnit2");

$./phpunit t/*.php
Warning: require(../Something):
failed to open stream: No such file
or directory

58

Makefile for PHPUnit
• We altered include_path yet again:

$path = dirname(__FILE__);
$path = realpath($path);
ini_set('include_path',
"$path:$path/PEAR:$path/PEAR/PHPUnit2:.");

$./phpunit *.php
Class AuthenticateUserTest could not
be found in CreateUserTest.php.

59

Makefile for PHPUnit
• Hey, let's try the expansion ourselves
$./phpunit AuthenticateUserTest.php
CreateUserTest.php

Class AuthenticateUserTest could not be
found in CreateUserTest.php.

60

Makefile for PHPUnit
• hmph
$./phpunit AuthenticateUserTest.php

$./phpunit CreateUserTest.php

$./phpunit DeleteUserTest.php

$./phpunit HashPasswordTest.php

• This doesn't scale, so...

61

Makefile for PHPUnit
test:

 cd t && for i in *Test.php; do ./phpunit $$i; done

• You're Welcome :)

62

Makefile for Simple-Test
test:

 cd t && for i in *Test.php; do php $$i; done

• pretty much the same as PHPUnit

–without the pain

63

Apache-Test Makefile.PL

• Apache-Test is written in Perl

• It follows standard Perl module foo
$ perl Makefile.PL

$ make

$ make test

• Don't be scared
–besides, I know you've all done it before

64

Hopefully, you saw...
• make test

• t/TEST -v

• t/TEST t/create_user.php

• t/TEST -start

• browser

65

glean_credentials()

function glean_credentials()

{

 $credentials = array();

 $credentials[] = '';

 $credentials[] = '';

 if (isset($_GET['username']) &&

 isset($_GET['password']))

 {

 $credentials[] = $_GET['username'];

 $credentials[] = $_GET['password'];

 }

 return $credentials;

}

66

Options?
• With all of these frameworks you can

stick the test file under /htdocs and
bang on it with a browser

• That sucks

• Or, you can stick the test file under /
htdocs and bang on it with a custom
client that aggregates results

• That also sucks

67

Behold the Power of Perl
• Apache-Test rocks

• Let Apache-Test do the heavy lifting

• It will
– configure httpd

– start the server
– run the tests
– stop the server
– issue a report

68

Apache Foo

• Apache needs a basic configuration to
service requests
– ServerRoot t/
– DocumentRoot t/htdocs
– ErrorLog t/logs/error_log
– Listen 8529
– LoadModule

• Apache-Test "intuits" these and
creates its own httpd.conf

• Configures all that is required to GET
http://localhost:8529/index.html

69

70

A Brief Digression...
• TAP – the Test Anything Protocol
–aka

1..2
ok 1
this is a comment
not ok 2

• Documented in Test::Harness::TAP

• Why the name?

71

Marketing++

• Once TAP was properly branded things
started happening

• There are now TAP implementations in
–PHP (test-more.php)

–C (libtap)

– JavaScript (TestSimple.js)

• Once you can generate TAP all you
need to do is feed it to Test::Harness

72

73

Writing the Client
• Magical things happen if you follow a
specific filesystem pattern

• In our case
t/response/TestFoo/glean_creds.php

automagically generates
t/foo/glean_creds.t

• This is a Perl client

• Simply requests the test file
–no special foo

74

glean_credentials.t

WARNING: this file is generated, do not edit

generated on Sat Dec 10 23:57:36 2005

01: /Apache/TestConfig.pm:942

02: /Apache/TestConfig.pm:960

03: /Apache/TestConfigPerl.pm:136
04: /Apache/TestConfigPerl.pm:569

05: /Apache/TestConfig.pm:624

06: /Apache/TestConfig.pm:639

07: /Apache/TestConfig.pm:1593

08: /Apache/TestRun.pm:507

09: /Apache/TestRunPerl.pm:90

10: /Apache/TestRun.pm:726

11: /Apache/TestRun.pm:726

12: t/TEST:28

use Apache::TestRequest 'GET_BODY_ASSERT';

print GET_BODY_ASSERT "/TestFunctions/glean_credentials.php";

75

Writing the Client
• You can write your own client

• In Perl or PHP

76

glean_credentials.php
<?php

$path = dirname(__FILE__) . '/../..';
$path = realpath($path);
ini_set('include_path', ".:$path:$path/PEAR");

require 'HTTP/Request.php';

$host = 'http://127.0.0.1:8529';
$path = '/TestFunctions/glean_credentials.php';

$req = new HTTP_Request("$host$path");
$req->setMethod(HTTP_REQUEST_METHOD_POST);
$req->addPostData('username', 'testuser');
$req->addPostData('password', 'testpass');

if (!PEAR::isError($req->sendRequest()))
{
 echo $req->getResponseBody();
}

?>

77

Brought To You By...

http://shiflett.org/

http://modperlcookbook.org/~geoff/

